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MATHEMATICAL ANALYSIS OF THE INTENSITY DISTRIBUTION OF

OPTICAL IMAGES FOR VARIOUS DEGREES OF COHERENCE OF ILLUMINATION o

(Representation of Intensity by Hermitian Matrices)

Hideya Gamo(l)

ABSTRACT. Since optical systems have distinctive
features as compared to electrical communication systems,
some formulation should be prepared for the optical image
in order to use it in information theory of optical
systems. In this paper the following formula for the
intensity distribution of the image by an optical system
having a given aperture constant o in the absence of
both aberration and focusing defects is o.tained by
considering the nature of illumination, namely, coherence,
partial coherence and incoherence;
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where I(y) is the intensity of the image at a coordinate
point vy, r12 the phase coherence factor introduced by ’

H, H. Hopkins etec., E(x) the complex transmission
coefficient of the object and A(x) the complex amplitude
of the incident waves at the object, and the integra-
tion is taken over the object plane.

The above expression has some interesting features;
namely, the "intensity matrix" composed of -the element
a - mentioned above is a positive~definite Hermitian

matrix, and the diagonal elements are given by the
- intensities sampled at every point of the image plane
separated by the distance A/2a, and the trace of the
matrix or the sum of diagonal elements is equal to the
“total intensity integrated over the image plane. Since
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an Hermitian matrix can be reduced to diagonal form by
a unitary transformation, the intensity distribution of
the image can be expressed as

I(y)=1 [oSnuil2+ Azl;?,s;,-}.: |5+ ------ A [0S ashi B enese

Where_xl,'xz, "”vkn’ ... are non~-negative eigenvalues

of the intensity matrix. In case of coherent illumina-
tion, only the first term of the above equation remains
and all the other terms are zero, because the rank of
the coherent intensity matrix is one, and its only non-
vanishing eigenvalue is equal to the total intensity

of the image. On the other hand, the rank of the inco-
herent intensity matrix is larger than the rank of any
other coherent or partially coherent cases. The term
of the largest eigenvalue in the above formulation may
" be especially important, because it will correspond

to the coherent part of the image in case of partially
coherent illumination.

From the intensity matrix of the image obtained by
uniform illumination of the object havi.g uniform trans-—'
.mission coefficient, we may derive an interesting quantity,
namely C

d= = S(Aa/ 1) 10g (/1)
where'An is the nth eigenvalue of the intensity matrix

and I0 is the trace of the matrix. d is zero for the

coherent illumination and becomes logN for the incoherent
illumination, where N is the '"degree of freedom'" of the
image of the area S, namely, N = 4GZS/A2. The value of

d for partially coherent illumination is a positive
quantity smalleér than log N. A quantity § = (do—d)/d0

may be regarded as a measure of the 'degree of coherence"
of the illumination, where d0 = log N and § is unity for

the coherent case and zero for perfectly incoherent -
case.

~ The sampling theorem for the intensity distribution
is derived, and the relation between elements of intensity
‘matrix and intensities sampled at every point separated
by the distance A/4o 1s given.



1. INTRODUCTION

The relationship between the image and-the object in optics in terms
of information theory is a recent topic. Even With an established fogndation,
such as treatment by responée functions, we are still on the threshold of
dealing with such traditional problems in information theory as entropy or
noise. While we have rather advanced knowledge of electric communications,
much of it cannot be reaﬂfigz;pplied to optics. There is a need to consider

specific optical characteristics and make new formulations.

From this point of view, optics is regarded as having the following
characteristics: (i) the directly observable .quantity is not wave amplitude,
but - the square of its absolute value, intensity. Intensity is never negative.
(ii) 'The‘amplitudé and phase of the response functiion in optics regarded as
a space filter are both independent physical quantities. In electrical circuits,
temporal variations occur and thgre are restrictions due to cause and effect.
(i1i) The information quantity, including the image, varies with the illum—
ination. For example, with coherent illumination we can extract information
on wave amplitude and phase,while with incoherent illumination, we cannot
extract phase information. (iv) In determining the capacity of optics as a
path of communications, noise is a basic physical quantity including the
effects of stray light, '"seeing" through irregular variations in the medium,
granularity of the film, the physiological process of sight, etc. In all of
these processes, although we either add a new intensity to an existing one or
subtract from it, the overall intensity can never become 'negative'". (v)

It is a multidimensional, especially a two-dimensional, space filter.

These facts are important starting points in building an information -
theory for optics and a discussion which ignores them may serve as a guide

line,but it can never be conclusive.

The author considered the first and second characteristics given above.

for a one-dimensional, aberrationless system and studied the changes in the -
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informational properties of the image‘dependingldn the third problem, the
degree of coherence, through the use.of the sampling theorem known in communi-
cations theory. The intensity distribution of the image is described in terms
of an intensity matrix, a positive Hermitian matrix, from which were derived
various physical concepts. H. H. Hopkins' "phase coherence factor" is also

used.
2. THE SAMPLING THEOREM

As a basis for later treatment,.let us . give a simple explanation of the
sampling theorem.v First, let us consider the optical system formed of the
light source, object, lens and image. The wave from the source with unit
intensity at point P above the source and incident at point Q on the object plane
is designated by A(x-z). If the complex transmittivity of the object is E(x), ‘
the amplitude of the wave after transmission is E(x)A(x-z). If we denote one
half of the aperture angle of the light bundle as 0, and the wavelength by A, /433
}hwa‘ T e then 2 sin p/l will correspond exactly
S l § to the band width of the filter in an

A; . electric communieations system. If

- e SRR
/\ k/ﬁ\\*ffjﬁ\\\\\j K we find the Fourier transformation value
T % ' E

i}ﬁ;i;::ilz/’///fo' \/\\*\132@ . f(X) of the complex amplitude of the
! o ~ above wave, we have:

|

t

. {
» F(y): complex amplitude of image - !
A(x—2z): complex amplitude of the incident ’f
]

. doo M
wave from a point source at P J(X.,2) ”'f E(x)A(x—2z)e~2%iXxdx (1)
E(x): complex transmission coefficient: ] i . ;
Figure 1 Here, since X = sin 68/2, corresponding

to the direction cosine showing the
direction of progress of the plane wave, f(X).is none other than the amplitude
of the plane wave progressing in the direction of sin 6 = AX. However, £(X),
which contributes to the image depending on the size of the aperture in the -
optical system, is restricted to a certain zone width. Or, from 2 sin 6/A

above,



—e/ASXSa/k 2)
Here, o = sin 6. - Thus, since the domain of £f(X) 1s confined to 2a/), we can

use a Fourier series expression:
SXD =S a@emremx T 3
aoce Co
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As to F(y), the amplitude distribution in the image plane, one needs to find
the £f(X) Fourier inverse series with domain 2q/k,‘and using Equation'(3):

F(y, 2) =f f(X z)e""" ax
+ ‘

= td (4)
: -a (‘) “lin Mz’xa n" A)

ezt -'_("‘”‘x_._z"_._ (4 ')
R % ;

However, as seen from Edquation (4), the coefficient ah(z) is none other than

the image amplitude F(nA/2a) in n)A/2¢ multiplied by Al2a. Thus,

§in 21;:;_(’_ ni
e S wd N L 2a .
F) -,..2.:-F 2«") 2ra) ___i_l_l__) Co (5)
: ' ‘( 2a :
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The complex amplitude of the image obtained through an optical system with a
zone width 2a/) determined by the aperture is readily. determined from the
complex amplitudes at points A/2a apart. Thus the system of equations

2na_

(uamsin 27 (y— n3/2¢)/-%," (y~n/20)) 18 a completely orthogonal system. Or, for any

arbitrary positive or negative integers n, m,



f..”' S dys= 2“3., (o, 1; n:):m.b)

The results are exactly the same as the sampling theorem for electrical signal
waves with limited frequency ranges, differing only at points where the
amplitudes being sampled are complex numbers. Such an.appearance of complex
amplitudes in the optical system is related to the second characteristic

cited in § 1. The results for the one-dimensional, aberrationless system
thus obtained can easily be expanded to cover a two-dimensional, aberrationless

system and if we use

Lein 2o e-mir2a)] %5 e-antoe} i 227

(w-mij2a)] 5% (o-mifze)}

as the standard function, then the complex amplitude 1imi£ed to any given
range can be shown in terms of an expanded series. Rigorous treatment in the
case of a round aperture is painstaking but it .can be accomplished by sampling
of the points on the lattice described above. For example, if we take the
lattice points determined by .a rectangular aperture circumscribing the given
circle, the amplitude distribution is determined by all the sampling values

but the values of each sampling can never be independent..

The discussion given above covers the case of illumination by a point
source and holds true only for such coherent illumination. And even in the
case of coherent illumination, it has a clear physical meaning only in the
case of independent derivation of amplitude and phase by a suitable phase
differential method. This is due to the fact that only intensity can be
observed directly, in accordance with the first property in § 1. Below we
shall discuss a method of finding physical properties from the intensity
distribution of the image in cases where the illumination is either partially

coherent or totally incoherent.

(Z)See Appendix 3.



3. INTENSITY MATRIX AND PHASE COHERENCE FACTOR

The intensity distribution in the case of coherent illumination is
derived by Equation (5) in § 2. If we denote the intensity at a point on
the image plane R (coordinate y) by I(y), then

=FOYF*O). ..
g (2 (T Jeiore o ©

Here,

‘ 1:-(.;5 = sin 2';"(1— ;: . / '2:" (J "..“;ﬁ‘)’
In the following, the intensity distriBution of the image is considered for
the general case where the source is of finite size.and brightness at each
point may take any arbitrary value. If we designate the brightness at a point
P on the source (coordinate z) by J(z), the intensity at a point R (coordinate

y) on the image plane is given by:

I0)= S5 awe 1a0) wa) @)
Co - L Gam= ﬁ(l)_ F(;: 78)" F‘(‘!’z!:'..-l)dlv! B (7')
For, since the light rays from each point of the source are mutually inco- [434

herent, the sum of the intensities at each point source is the intensity of
the whole. This fact can be understood from a statistical point of view in
the following manner. Since intensity is the squared time average value of
the light wave, there is no correlation between the light waves from the

light rays at each poig;/aﬁﬁzihe squared average values for the overlapping

waves are each equal to the sum of the squared average values.

The results for Formula (7) above constitute the major portion of this
paper. Formula (7) is a quadratic equation with variables v and u and

coefficient a And, since intensity cannot Be negative, this is a positive



quadratic equation. The matrix formed by the coefficient a 18 referred

to here as the intensity matrix(s), Given this matrix, since the intensity
distribution for the image is defined, we can say that the intensity matrix
includes all informati6ﬁf;n the intensity distribution of the image. Below,

we consider the physical properties of these intensity matrices.

Let us consider the expression of the intensity matrix element a. in
terms of H. H. Hopkins' phase cohereﬁce factor. The latter has been thoroughly
studied already and is of considerable convenience in treatment. First, let

us transform a . as defined by (7) as follows:

son=[[[ IO EEDE D A=A 51-2)

nd \ of mi ' ;
u(x,——z;)u‘(xg— *‘2¢ -)dx.dxgdz . ;

€))

Here, u(xl.—‘pA/Zd),_u(xz - mx/20) is the amplitude of the image produced at
point R, x = nA/20, mA/2a of the image plane wher a wave with unit amplitude
at points Q, Q, in the object plane passes through an optical system of zone
width 2a/A(o: numerical aperture, A: wavelength). In the aberrationless

system considered here,

(ir20) ain 20 (= 22) e (- 12) 8"

(For proof, see appendix 1).

' In the form of (8), the relationship with the phase coherence factor
[2] becomes clear. If we take the integral I(xl,xz)'for the light source
position Z included in Equation (8), -

I(x, x2) = f](Z)A(‘n-l)A'(kg;z)dx %) .

(3>The intensity matrix has features in common with the information matrix
proposed by D, M, MacKay [7] with no specific object. N. Wiener proposed a
coherence matrix, treating the lightwave as a time series [8], but it has not
been applied in optical systems.



This quantity is. a kind of . correlative function for the complexramplitude at
‘xl,x.2 and if we let UirUZ indicate the amplitude ‘at each point due to source
Z, then it can be expressed as: '

I(X],S;) -fU,Ug' dz ‘

"

Iijl,I2 are the intensities at points x,

Zaxs

Kz #) =V (32 "

Here T(x; - 2).ié'Ehéwiﬂégéiégherénce faéébr;fahich, by definition, is:

r(g‘—-zz)-;—/rill—lz— U, Ude . (10)

Since Il’ I2 are none other than IA(xl)lz, [A(xz)lz, the squares of the abso-
lute values of the complex amplitude of .the .incident waves at points X5 X

2
of the object plane due to light source
axn= [[T(51- 2 EG) ECen | A | A |
u(x;.—- -;}) u‘(x,-—n ;:-)dx; dxy o i % (ll)

|
i

Here, E(x) is the complex Efansmissiﬁity, A(x) is the complex amplitude of the

KL

incident wave,ucn—zc) is the amplitude of the wave produced at point ni/2a

of the image plane by the wave with unit amplitude at point X, of the object
plane (Equation 8'), and I'(xl - 2) is the phase coherence faéf&%j Accord~ |
ing to Hopkins, I' is given by

(X=X Yim¥i)= 7t e

f f J(%, eileXi= X401 =Y2). dx dy (12)

J(x,y) is the brightness at points (x,y) on the light source. We know that
illumination using a condenser lens can also be expressed by an equation like

that given by a suitable equivalent light source.



Equation (11) above is the first bf our desired results. Next, let us

consider several actual cases of intensity matrices Ilanmll.

4, EXAMPLES OF INTENSITY MATRICES

4.1. Coherent Illuminaéion

The phase coherence factor I‘(xl - xz) in ﬁhis case is always 1, regardless
of Xys X [2]. Consequently, if we set ' = 1 in Equation (12), we find that

this integral is separated into the product of two integrals, or
(Y
Osm=F (‘zc‘)F‘( % ) .

The products of the complex amplitudes at! points ni/2a, mA/20 in the image
plane are none other than the matrix elements. This brings us back to
Equation (6) in § 3 and it is important in the discussion below to comsider
the meaning of the matrix in terms of these elements. A conspicuous feature

- of the intensity matrix in this case is that the matrix rank is one,and the 1435
eigenvalue which is not éero is (Zaﬁ39° When the minor determinant formed

by the matrix elements is zero for some degree lower than r and the minor
determinants of degrees greater than (r + 1) are always zero, the rank of

this matrix is said to be r. It is easily seen that the second or higher
degree minor determinants with elements given by Equation (13) will all be
zero. And, therefore, the formula for finding the eigenvalues (characteristic

equation)
Aet] Gy —ABym| =0

" becomes xN - (Z:a,mn)xN_l = 0 and only one of the eigenvalﬂes will not be zero.

This is equal to the trace (spur) of the matrix.

10



4,2. Incoherent ITllumination.

The phase coherence factor I in this Cése is:

F(xy~x)= {1 : ":l¢:. :
) 1% X2

If these conditions are used in Equation (11), the element am of the intensity

function in the case of incoherent illumination can be expressed as a single

integral, as follows:

coum [ oref o= Ju(o= 22 Yo a6

]

Here,

o) B e 2

The computation of this equation is closely related to the well-known integral
I(y)-j::l.(x)]u(x—:y)}!dvxb (14')

which gives. the image.iﬁtensity I(y) with an incoherent source [brightness
I(x)]. According to the latter,.one .integral would.be.enough,while according
to the intensity matrix the number of necessary integrals increases, leading
us to suspect needless complexity. We shall consider this point at the con-
clusion.

-

The simplest case.is that where the brightness distribution at the

object is uniform: if I(x) = A (constant),

T s B o I (15) (4)

-—z—:--A S (3na=1, nmm; Sun=0, .

” ) [

(A)Determined by I(y) from-Equation (14') and (15). Should be consistent with
I(y). See Appendix 2).

11



Another simple and fundamental case is that where the amplitude distribution
at the object plane varies sinusoidally in space. The brightness at the
object plane is

1(:)-A costos -- A(l+c012ux) (15)

In this case.the intensity matrix element a m is the integral

a...-; A - (14cos 2uwx)

ch ) 2:3 (‘_ mA ) B

)

Transforming the independent variable to Znux/A = £ and letting Aw/27m0 = p,

(16)

we obtain:

sin (e—mr\ .
-nr -

Bam=A —‘-'-‘ f (1+cos 2pe)

_sin (e—mr)

TE—mx “dé.

Since this type of definite integral occurs.frequently in the examples given
below and many of them are not found in common tables of -integrals, the

method of integration and the chief results are compiled in Appendix 3. Let
us briefly show the results. When 0 > p > 1, or when (0 < w < 2ma/A), n # m

a sin (n—m)rr(l —-p)

(i—m)r ~— ¢08 (13- m)prn

a..-A
R o (16"
Gua= 5" 1+ (1-p) cos2npr) n=m
when p > 1, or w.> 2ma/A, then an" 0. The results which become zero above
a certain frequency are.consistent with the fact that, when the image intensity
distribution Equation (14') is treated as a response function, a triangular
response function occurs [1] and the values higher than the frequency range

4ma/X become zero.

Let us consider the rank and elgenvalues of intensity matrices on the

basis of these results. When object brightness is uniform, the intensity

12



matrix for Equation. (15) will clearly be.a diagonal matrix, the diagonal
elements are not equal to zexo.. Of the cases where brightness varies period-
ically, if we take the one where p = 1/2, of w = a/A, the matrix will like-
wise be diagonal, with diagonal elements equal to 1/2A(A/2a) (1 + 1/2 (—1)n).
As séen from these examplés; the rank of the intensity matrix in coherent
illumination will be 1, while the value will be larger in the case of inco-

(5)

herent illumination .

4,3. Partially Coherent Illumination

In the one-dimensional problem we have just treated, the phase coherence

factor is given by ///////f

Flshms) ==y " “n

in accordance with Equation (12). .S is a parameter showing the size of the
 1ight source, Naturally at the limit § - 0, ' = 1. If we let o in Equation
(17) remain equal to the numerical aperture in the system cbnsidered so far,
S = 1 may be thought to mean that the size of the aperture when the source
is seen from the object is-equa; to the numerical aperture in the system in
question. From the results given below, one sees that the conditions where

§ > 1 or 8 < 1 are very important.

Let us find the elements of the intensity matrix for an object image
with ordinary transmittivity. Substituting I(x1 - xz) given by (17) in (11),
and letting E(x) A(x) = K,

oA /-' _sinS(E—=9) _sin (¢~nr)_
. el o S(E""Q) o E—nn

o (18)

-

“ei'n (y—mzx) .,
y—mr didy .

(S)When the size of the object in question is finite, variation in the inten-
sity distribution or transmissivity of the object plane can be expressed as

- a Fourier series and the results of § 4.2 and § 4.3 can be applied to each
term.

13
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Here, & = -21roxl/ A, n = 2.1ro.x2./}\. The results of this integral are as follows
(see Appendix 3): ‘

o e (18")
sql ¥ a g S0 SH-m)E | (8™

. Sin-my= w_&i

S

Next, let us consider the case where the wave amplitude in the object
" plane varies sinusoidally. Sub»stituting I‘(xl - xz) as given by Equation (17)
in Equation (11) and letting E(x) A(x) = K cos uwx,

T T e 4’- T .
c..=-§f_’_f__cos)5cospy
. - (19)
sin S(&—g)sin(§—-nr)sin(y—mx) ded
CSE-D@E-nm) g-mmy T

Here, £ = 27rozx1./)\, n-= Znaxz_/k, P = Aw/2ma. The details of computation are
given in the appendix and the results are shown here.

() p>A+8), ($>1 2z >

‘aam=0 e :
(1) Qe9)<p<l  (S>1, it S>D) (20-1)
“‘U X A_ - ..—_“"_. T
G 25 (nemyw VM } (20-2)
. ?gu" 'f‘s‘ (1+8-p) . - l

(depending on whether S > 1 or § < 1)

o K_A+B
S oL (20-3)

. 8 1-7-254_—-7-("_:”?’)”
|

Gunm K (145-p+201-p) cor2nps) |

Here, A and B are: S . e
’ . A=cos npz sin (n—m) (S+1-p) 2

‘cosf(nfm)pi-('s—l)(ﬂ-m)}; S
. —sin npr sin (n-m) (p«i-l—S)‘;~ : ' (20 4)
' sin J(n-+m)p+(S=1)(n—m)) ;

(Equation. continued on next page)
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2Basin (n—m) (1-p)= cos (nimpx
© ~8in (n—m)pr cos(n+m)p+n—mix

LG, $>1, L (S-D>p>1 0| (20-4)
Can=0 (nm) T
o B
hLAY Y {

K sin (n—m) (I-p)x
(n—‘m)r:

cos (n+m)p;
g (mm) (20-5)
.l_du- _,A; (1-1—(1%1:) cos 2npr)

Gv) S<1,  (A-8)>p>0 !

: sin S(n—m)x
S(n—~m)r .
can=K2 cos? pyx (20-5)

Cam=K*cO8% pyr (n=m) . .

We notice several interesting points when looking at the case of partially
coherent illumination as described above. First, with inqoherent-illuminétion,
when p > 1, w > 2ﬂq/k, anm = 0 and no intensity variations occur but witﬂ
semicoherent illumination, they are difficult to Jistinguish since p > (1L - S),
w > (1 + S)an/k,and they are effective over a greater range than in -the
preceding case. Secondly, when § < 1, (§ - 1) > p > 1 we obtain results in
exactly the same form as incoherent illumination in (iii). Thirdly, when

S <1, (L-95) >p >0, the results of (iv) are found to revert to the case .of

coherent illumination at the limit S -+ 0. ,The.determinatiqn.ofAthe.matrix

rank according to the above matrix elements and the eigenvalues is very

difficult, except in special cases. - This fact limits the practical signifi-

cance of treatment through intensity matrices. However, since the intensity
matrices themselves havé the interesting, general properties described below, /437

they are useful in organizing and clarifying the physical concepts concerning

optical images.

Above, we dealt only with cases where the transmissivity or brightness
varied periodically but for images of objects with arbitrarily varying trans-
mittivities or brightnesses, the transmissivity or brightness can be expressed
as integrals of periodic components by Fourier integrals and handled.through

calculations closely paralleling those cited. Thus is is not difficult

15



- to formulate intensity matrix elements for objects possessing general trans-

missivity distributions. -
5. GENERAL PROPERTIES OF INTENSITY MATRICES

The intensity matrix was introduced through the piocess of finding the
square of the amplitude, using the sampling theorem for transmission systems
with limited frequency ranges. In electric communications, the square of the
. amplitude is a quantity proportional to electric power, and .a formula coin-
ciding with the intensity matrix emerges, but this problem need not concern
us directly here. This is because the coherence of illumination in an optical

‘system is a question specific to the optical system, as described in § 1.

In order to simplify comprehension of the disc: ssion which follows, let

us write Equation (7) once more. The intensity I(y) is

I(J')“E m? Cum “u()) un(y)

s

u-(,?')=sin 2ra ___“_)/ ch(

(7

U5 u2, ceny uh, cee constitutes one vector of a multidimensional space, the
total of Zanm u =V, is another vector, and the intensity is the scalar pro-

duct of the two vectors.
1Y =, AD). (21)

¢ is the vector'{ul, u2, vees un, ..}} and A is the matrix with elements anm'
For the dimension number. (N) of the above multidimensional space related
to the image with which we are concerned,we may consider the '"degree of
freedom" of the image. The degree of freedom N is none other than'the number
of sampling points expressing the image in question. If S is the area of the
image, then N = 4aZS/A2. This number N corresponds to the degree of freedom

defined by Toraldo di Francia in the case of coherent. illumination. However,

16




Toraldo adopts another definition in the case 6f inéqherent,illumination.

In comparison, our method of defining image degree of freedom by the dimen-
sion number determining intensity is more consistent mathematically. All the
problems of illumination coherence are then included in the properties of

the intensity matrices. This enables us to separate the dimension number

of the space determined by the numerical aperture in the optical system from

the problem of illumination coherence.

Let us first discuss the main poihts of the physical properties expressed
through intensity matrices. The first is that the intensity we are observ-
ing is a real number and it is never negative. From this basic requirement,

the mathematical properties of intensity matrices are induced.

(i) Intensity matrices are positive Hermitia~ matrices.

Hermitian matrices are those whose members satisfy the relationship‘
dum; Q% g (22)

which is easily deduced, setting I(y) and.I*(y) equal in Equation (7). The
fact that they are positive matrices isdue to the fact that y in Equation

(7) is never negative (6). Using the mathematiéai results regarding.positiVe
Hermitian matrices known to us through these properties, we can carry out

further studies using intensity matrices.

Next let us consider the direct relationships between the elements of

' intensity matrices and the observable physical quantities. One of these is:

(ii) The diagonai.elements of an intensity matrix are equal to the

sampling values of intensity at A/20 intervals, and the trace of the intensity

matrix (sum of diagonal elements) is equal to the integral intensity of the
image.

(6)The condition therefore-is that the primary determinants of matrix]llanmll
are all positive.
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The first property is found. from the fact that function u (y) included
in Equation (7) is one at sampling point y = n)/20,and zero at other sampling
points. The quantity called the integral intensity is the image intensity
integrated over the entire image plane. Using. Equation (5'), the integral
in (7) becomes

e frorie S )

(23)

I1lumination coherence is included in the properties of.the intensity
matrix,but it is specifically represented through diagonalization of the
matrix by a unitary transformation. In representing the intensity I as the
scalar product of vectors as in Equation (21), the vectors with basic coor—
dinates for the representation of (12) are denoted by (13). However, it is
a rectangular vector with components like ¢1 (1, 0, 0, 0, ...), ¢2 (0, 1, 0,
0, ...), etc. The vector ¢ given by these basic vectors can be expressed

as
*_ .;‘f‘+ ..L.,#, ..;..-';' (24)

‘The problem here is to use a rectanguler transformation of basic coordinates

to change Equation (21) to the simplest form. The new basic vector satisfying

such demands is called the eigenvector of the glven intensity matrix. In 1438
other words, the eigenvectors ¢1, wz, ceoesy wi’ satisfy the following relation-

ship

Apimligy | (25)

_ A is a constant, called. the eigenvalue, and it is easily proved that the
eigenvalue of a Hermitian matrix is a real number. If we call the components :

of eigenvector ¥ (Sl, Sz, S ), the formula for the eigenvalue and the

3’ o9
eigenvector A¢ Ay can be written as follows,
(au"l) S,+ay S;+"n Syt oeene +a. S.-O

@ S;+ (@2 2) Sz + en Sy+eove +@2y Sy=0

..................... | | (26)

@iy Syt apz Speteenees +(ua~2)Sa=0
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.

Sinég this system of equations for Sl’ SZ’ «+. has solutions other than zero,
the determinants made up of the coefficients must be zero., .The formula is
called the eigenformula and Ays. Ays -o. are to be found as its solution. If
we find the solution of thée system equations with the respective eigenvalues
substituted in Equation (26), we obtain the eigenvector belonging to those

eigenvalues. Letting (S i; ceny S i) be the components of eigen-
n

11> 5210 53
vector wi of eigenvalues’ li,the square of the absolute value of this vector

is given by (wi, ¢i) and the vector, normalized to equal 1, is adopted. And
it can be proved that the eigenvectors are mutually orthogonal [5]. Thus the

norms and orthogonal conditions can be written
(@i, &) = Sii* S|i+S:,""S=j+ ------ + Sui® S.,';-J'.'i‘ (2 7)

Returning to the beginning, by transfofming.the.basic coordinate vector
from ¢l’ ¢2, cons ¢ to.the above eigenvector ¢l, wz, osey w the vector
¢ (ul, Uys eses u ) can be expressed by the new vector w = (&l, EZ’ oses E ),

or:
Fmb e bt b da (28)

Writing the vector.components:
wmgoan’ (29)

and thus, if the matrix with component S k'in row i and column k is shown

i
by S, we may write

$=5¢ | (30)
The coefficients in Equation (28), or the components for the new

coordinate system.of vector ¢ can be written, by virtue of the rectangular

" nature of eigenvector wi 27
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&= (i ) (31)
and using the vector components wi’ ¢, in the form of
=S "y 31"

Ski* in Equation (31') is the component in row i, column k of the inverse
transformation matrix,but this matrix has conjugate complex numbers for each
element, with rows and columns transposed in'matrix.S'for Equation (29).
Generally, the transposition ofkrows and columns in a matrix 1is indicated by
dashes, but we are expressing the transformed matrix for Equation (31) by S'%,
Thus,

¢=S*¢ (32)

If we consider the square of the absolute value of vector ¢,
@ H=Slult (28)
However, from Equation (28),

B H=(Caen T
Because of the rectangular natﬁre of the basic vector *1’ we find (¢,¢) =
Zlaklz, and in the coordinate transformation with which we are concerned here,
we find the square of the absolute value of the vector (the norm) to be
invariable. This can be shown from the rectangular nature of Equation ¢X))

using the expression in (29). According to Equation (31'), and because of

the invariability of the norm,

. gs.-.' Sjamdi; (34)

can be proven. If Equations (27) and (34) are expressed through the use of

unit matrix E,

20



§"*SmSS®=E (35)

Generally the transformation satisfying such a relationship is termed a unitary
transfofmation,and the matrix S which satisfies the relationship in Equation
(35) is called a unitary matrix.

Let us consider the manner in which Equations (7) or (21), expressing
intensity, are transformed by the above unitary transformation.S. If vector

¢ is expressed by a new basic vector wi as in Equation (28), we obtain
I=(4, A= (i 0 AS £50))
Using (25) and the orthogonal Equation (27), we readily find
I=suler (36)
Through (3l), since Ei is expressed in'(31) or (31"

I=3 2 (%, 6) |2 37

=T 55" ma?
[ ~

Showing the_aBbve results in matrix form, we have

I= (3, A5)
= (S8, AS0) = (9, S*ASY)

but through (37), we find that S'*AS is a matrix where elements other than
diagonal elements are zero. Letting D indicate this diagonal matrix,

S*AS=D (38)

Here the diagonal elements of D are none other than the eigenvalues Al’ AZ’

LR )\n-

An interesting result readily induced from (38) by (35) is
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A=SDS® . (39)

°

Or, for the matrix elements /439
“ﬂnu" E ‘f‘snl s-l':" . (40)

The most valuable of these results in considering the physical properties

of intensity matrices are Equations (37) and (40). Let us consider these
two findings.

(iii) In terms of eigenvalue A, and eigenvector ¥.(S,., S,.s »ee5 S_.)
— i iv714i? T24 ni
of a given intensity matrix A, the image intensity distribution is here
1-31,-1;,'3.,-*.«.}:; K
2rna / kA (37)

ur=sin 2re (y—~k§—')" P
2 2 )1 2 V72
When the illumination is coherent, all eigenvalues save one are zero and

I=2|SS"wa |2 (37")

Here, we find that /XoSk is a quantity corresponding to F(kA/2¢) in
Equation (5). In partially coherent illumination, a number of terms appear
in (27) bﬁt the major part is played obviously by the terms beloﬁging to the
maximum eigenvalue. In the completely incoherent case, each of the eigen-
values is of more or less the same importance. In § 4.2, in the special
cases of uniform object brightness or when the brightness varies sinusoidally,
we do not have a unitary tranéformation but an equation in the form of (37).

When the object brightness is uniform, all the eigenvalues are equal.

As a result, depending on the \falues taken by the eigenvalues, the degree
- of illumination coherence can be estimated for fhe image formation. TFormal '
thbugh it may be, we should like to consider the following quantif%es. With
~-Ai as the eigenvalue, since the sum of all eigenvalues is equal to the trace

of the intensity matrix and to the integral intensity I, of the image, the

0
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quantity

ISR Yox Gafly | (41)
with d = 0 in the case of coherent illumination;Awhile.in'the case of inco-
herent illumination with uniform brightness, d is maximum. If N is the degree

of -freedom of the image,

d“-ioﬁ N

However, for N we find in the.one—dimensionalicase N = ZaL/A with image
length L and N = AaZS/AZ with image area S in the two-dimensional case.
Here, when the image area is very large, N increases indefinitely, but if wév
take d/do, we can deal with the upper limit for N. Then, when we take the
quantity

3= (dy~d)/dy

it changes from 1 to 0 as one proceeds from coherent to an incoherent uniform
object image. This quantity is interesting in that it may be regarded as
. " (7)

one measure of coherence. & may be defined as the "degree of coherence".

Moreover, according to von Neumann [8], —IA, log A for matrix A is

given by

- s'z;.}og'a.-m—'rraé‘g (Alog 4) (43)

Here, the function log A of the matrix means the matxix obtained by subsgitut-
ing matrix A in each term of the series expanded logarithm. This furnishes
a method of evaluating § without a unitary transformation of matrix A.

(7)In a paper submitted to Kagaku [9], we discussed § for images of objects
with uniform transmissivity or brightness but according to (18'), one cannot
distinguish between the semicoherent case when S > 1 and the incoherent case,
and further study is required.
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Now, let us summarize the results obtained from Equation (40):

(iv) The arbitrary Nth degree positive Hermitian matrix, and consequently,

intensity matrix element a e are given by

Guu=T, 2; Syi Smi® _ (40)

from the positive real number A, of N and N orthogonal normal vectors wi

i
(Sli, SZi’ cans SNi)°

The number of variables designating an intensity matrix is determined by
the above N eigenvalues and N eigenvectors. Since the vector component Sij
is generally complex, it may be thought of as Sij~= rij exp (eij). Here,

eij are real numbers. The number of,K variables designating these vector

. ri.,
J th

components is 2N2. Consequently, the number of variables determining a N

degree intensity matrix is (2N ~ 1)N.
However, there is a conditional Equation (27) for N vectors to be
positive orthogonal vectors. These conditional equation numbers are

N - 1/2N(N - 1) = 1/2N(N + 1), and thus:

(v) The number R.of independent variables to designate any arbitrary

Nth degree intensity matrix is:

R=N@N+1) = 3N(N+1) =}(3N-+1) - (44)

However, the simplest case of an intensity matrix is .that of cohereﬁt.illumi-
nation. This is because all eigenvalues but one AO may be zero. In this
case, only one vector is needed to give the matrix elements, and the number

R(coherent) of independent variables is

R (coherent) =2N (45)

These numbers of independenf variables are fundamental qualities relating to

entire Intensity matrices determined by illumination coherence. However, we
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will show that all of these independent variables do.not have any significance
with respect to-actual intensity matrices. Rather, intensity distribution
itself is determiﬁed by 2N sampling values (the number of sampling values for
an amplitude with coherént illumination is N). If we say that these 2N
sampling values may take on any arbitrary values at all,'the situation would
be simple. In actuality they must be sampling values of the intensity dis-
tribution in the form of Equation (7) which can be formed from the above
intensity matrices. This means the introduction of a correlation between the
2N sampling values. .Consequently, the above intensity matrix properties are
indispensable in inducing the amount of information cohcerning intensity
distribution. Actual treatment will be reserved for discussion at a later

opportunity.

(vi) Intensity distribution. I(y) [Equation (7)] is determined by the

sampling values at intervals A/4a of intensity distribution, regardless of

illumination coherence, and sample values and intensity matrices are related

"in the following manner:

= drag M
ro-gi) L) @
o a(ay

Here,

(P)-z3 ,..'"...( B (L)

'?"'/ nm '\43

»k-2ﬁ:j u;(.Zpi/:l;z)no' pEn

, o Ha(2pA/da) =1, p=n

k=2p+1: #a((2p+1)4/4a)
LoD Reem sy
To prove this, one finds the Fourier transformation of the intensity

I(y) for (7) in § 5. The Fourier transformation of.the right-side integral

un(y) um(y) has twice the range of the Fourier transformation of un(y) alone,

as follows, outside of which it is zero. The following integral is found by

the method shown in the appendix
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e~ l-!.igb ‘

) I Iin(G—nz)sxn(E;m;)
' I"'(“) f (E—nz) (E-mr)
3 ..>2, ot w<-2and fa=0 -
L0<u<? o ,
A 1 ¢—in(n--(n-m)3—¢-n~m~+n-m]

: I-.-z. e @
S 0e> -2 : ’

. 1 e ﬂJn--(n—m))-e—l("U"Fl"MJ
amem T T
2 n—m

) 8 =0 Wh.enp ’”]>23ndllll500

; 0?2 'I..-g(l— '2" ) .¢—T'l’l‘;¢4

(.)>u?-'-;2v. I-.-*(l"' ;) e-isens

Thus, we find that the range of I(w) is limited to 4a/);and by using the
Fourier series transformation in accordance with the sampling theorem in

§ 2, we can derive Equation (46).

Rewriting for the sampling values in (46), anu letting Bk designate the

kth,sampling value,

7 B*p-ﬂm’ Brttm

)32*6::( 1)"*'/{2(1' k) + 1){2(1’—')+1}

(48)

And the relationship’

2"“”0'2 B: p-E B~»n~2¢n : (49)
holds for the integral intensity I0 for the entire image, from Equation (23).

6. CONCLUSION
These results supplemented a speech at the April 6, 1956 Applied Physics .
Joint Lecture Meeting/sym’fcgﬁmvon "Contributions of Information Theory to
Physics" [9]. The physical significance of "intensity matrices" presented
" above was explained. This work is more in the nature of a "prelude'" to
applications of information theory, and if it is to be used for actual calcu-

lation of amounts of information, intensity matrices must be expanded to
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cover two-dimensional.cases. There remain§iiﬁéjfﬁﬁ&;méﬁﬁa;’pfbﬁiéﬁfbf"hhéﬁggé‘
in intensity matrices due to the phase differential method and the problem of
intensity matrices in the case of optical systems containing aberrations. We

intend to report on th;s/af’éﬁother time.

Moreover, the discussion above dealt with finite dimensions, and for
completeness needs to take up infinite dimensions. For this, one ‘must apply

Hilbert spaces, but that was beyond the scope of this short paper.

I should 1like to thank Professor H. Takahashi of Tokyo University's
Department of Physics and Assistant Professor K, Miyake of Tokyo University
of Education for their consultation in compiling this paper and Professor H.
Kubota of Tokyo University's Production Technology Institute for providing

reference materials on the applications of information theory to'optics‘
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Note.in Revision -

It has come to our attention that D. Gabor.in England independently
describes the general application of Hermitian matrices to images. Informa=-
tion Theory, Third London Symposium, edited by Colin Cherry (1956, Butter-

worths Scientific Publications) Vol. 4. Optical Transmission by D. Gabor,
pp. 26-33.

His method of derivation is different from that used in this paper, but
the content is essentially the same and it is recommended -that it be read in
conjunction with this. In this paper, the author stated that matrix manipu-
Jation for intensity matrices in general cases was rather difficult,but later
came to the conclusion that intensity matrices cbuld be manipulated in the'
case of different objects or systems with aberratiuns through matrix trans-
formation. This was presented at a lecture meeting of the Physics Department

- at Tokyo University on October 3 and the details are to be published. No

discussions with Gabor took place,but the concepts are very similar.
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Appendix 1

Proof for.Equation (8).

Letting E(X) be the complex transmissivity of'the.object, A(x-~2z), the
complex amplitude of the incident wave, according to Equation (1), the

Fourier transformation of E(x)A(x-2) is

S0 = [ E@ A(s-2) e-2eiks ds (1

Also, from Equation -(4) .the amplitude distribution F(y) in the image plane
is

Fo=f feaaminy ax (2)

A

Substituting (1) in (2) and changing the integration sequence,

- V sin Zre U—;)—{_—‘—
F(yoa)= j:‘ :E(x)A(z—z) - -,'_'(;__} )-:—-3‘ dx (3)

Here, if we let u(y - x) = sin 2;“ (y - x)/n(y - x), then

Fou= [ E@AG-Du-2) és’

And if we next insert F(‘E‘{“)- F(';: ' z) for points 7;:—;'::—?;21 in Equation (7),

we obtain Equation (8).

30



Appendix 2

(1) Incoherent case

-Substituting the intensity matrix given bj (15) in (7),

T 2re / PR
st 0o 1 ,?

2;_13 _mo
2 (.9

In=24%

Necw

" 2e /)

Also, from (14')

s e Ve
I(y)-Af__{ A 9070 Laxt

n(y—;b '
2« 1 f= sgin® (p—¢§) . 2z .
= el e * .2 “AJ

= _sint (g=nr)_

Comparing both of these, we find that generallyﬁéﬂ (v_"a,"l must be true.

This relationship can also be derived from the seriés expansion of 1/(sin n)(s)
Similarly, when the object brightness varies periodically, if we substitute
(16) in (7),

Sin*(E—nr)

. I(G)- Ac r1+(l—p) 2_," cos ann

€-nm)®
) o S0 (0~ m) (1 —p)=_
2 }3 ("_m) cos (n +m) pu-

SR nrlsinge i)
(E—nr) (E—mx)

Also, finding I(£) from Equation (14')

16 <% QA+ (-p) con2pe) |

3

Setting these equal to each bther, we obtain a single équality.

(3) For example, Formeln und S#tze fir die speziellen Functionen der o
mathematischen Physik; (Formulas and Theorems for Special Functions of Mathemat-

'ical; Physics) (Springer 1948) p. 215.
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(2) Partially therent Illumination.

As to the image inteﬂ:y- distribution .Vfor the case where object trans-
missivity is constant;/substituting a . in (7) according to (18') and (18"),

sin® (y—mn) ) _ K®

Kﬂ
71, =T {2 MO s

S<l
. 5in S(n—m)x sin [p—nx) sin(y—mx)
I-K 2:-% S(n—m)rn p—nr Ty—mr -

Also, for the equation corresponding to (14') when illumination is incoherent,

we find
i(;r)r'-= f f r (x.—xz)E(xl)E‘(xz)A(xx){l"(:z)
D xu(gy—y)ut(xz—y)dxds: ‘

but, levtting E(x)A(x) = K and substituting u(x -.y) from (8') and I'(xl - xz)
from (17), we find, similar to the integral in (18),

51, 1=K sa1, 1ese

Thus, we derive

S5 Se-mx sin G=nm)_ winle—mn
am S-m)=z p—nx y-mx.
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Appeﬁdix 3

» .’..'*'z'.;.;"(';';,f) TR
: 2 4

Letting the variable equal -2?-" -¢

Y f+- sin (E—mr) sin (e—m)

- (G—mr) (G—mn) 4d£

2za
Since the integrated function can be expressed as

{cl(f-l')—g‘i(f-l')l [el(f ""’-t"“‘"))
(20’ . (&—nn) (E—mn)

the original integral is the sum or difference of the following four integral
forms '

s 5:"’ dx . elta—gmieny
f- TR Y73y X L W .(>®

(- ),,_____‘Ll:_’_ (c<0)
I_ 2
To find this integral, one must select a method of integration such that
~exp(iax) vanishes, at infinity, and adopt Cauchy's principal value, in the
case where the integral has an extremity on the real axis. Designating this

kind of residue along the real axis by Ro,we must note the contribution of

f$R+; to the value of the complex integral. However, R is the residue
of the extremity inside the integration path. (Whittaker: Modern Analysis,

page 117, 1935). The originally described results of integration were
obtained by this means.

(2) That which is included in the integral in (16)

- sin (E-—nr) sin (E—mn)
™ ‘f_. co:?pf e—nm e~ de
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As above, this.is.separated"into.comﬁlek.integrals containing designated
functions. The results are immediately reached by applying the above formula

to each, or

’>1 Ill-o ) 4
0551 nxm -

1o sinx (n=m) (1=p)
..- - n—m

. mmm  lum=r(1—p) cos2znp.

cosx(n+m)p

(3) 1Integral included in (18)

’- f"‘ _sin S(¢—vx) sin(G—mr) a

S(€-v9) ‘E~nx
5>1 J= 5. 8D (gomr)
y—nr

S
S<l Im r_ sin (y—nx) !
S F-nx )

(4) Definite integral required for calculation of (18)

smS(e v) _sin (E—nr)
”"f S(e~n =3
(i) S=21, p>(Q+8); I=0
(i) S$>1 (1+8)>p>(S-1), B2, S<l
A=-S)>p>(1-9)
I T sin(S(y—rnn) -+ pnr)+sin (y—ne—py
28 - .

déﬁ

Gii) S$>1 (S-1)>p>0:

n sin (p— mr)
!--3— y—nr cos pp
(iv) S<l. (1—S)>p>0: o
= sin S(y~nr) : i

1-? ~~---~v'_’-";~--— cos pnr.

(19) is reduced to a single integral using the results above, i.e.:

(1) S>1 p>@1+S) .. ‘,_frx‘.';so
(it)y S$>1, (1+S)>p>(S-Tl)
‘ S<1, (A+8)>p>(1-9)

2 pte
;(Sf cos py
{sm (S (v-mr) +pnr) +8in ['-"R-PL)
' Q—nt

x. sin(dz—mr.-)
p—-mn .
Gii) S>1 (S-1)>p>0 R ;

. K2 pe~ .. Sin(g—yr) sin (v—mv)
Cam™ ,_.S.f__ cos® by g-ne —mx dr

dy
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C@v) S<1 (A-85)>p>0 o
-a.,- f; cos pnx f ’: cos ;u" l'ié fi';”‘). .

% sin(y—~m=) dy
g—mn

(R

Of these integrals (iii) and (iv) are readily found from Formulas (2) and

(4) as given above. The integral in (ii) is transformed into the following:
o -—2;-{5{ Cam=sin par f ": cospy ﬁ-‘s%:;’ﬁ)-
lln'(:;;nx) dv (2
sin S(y—nx) sin(v-ma)d
y—-nx v—-mz
Ab)
"’f cos’pv q!p_gv mr) sin (y—mn) de (c)

A /443

cos(v—-mr) sin(y—mn) g
y—ng cy—mne dy.(d) U

x
+cos s pur f con py -2

-—f sin pycos py

In integrals (b) and (c), the above formulas can be used;but new calculations

are necessary for (a) and (d).

.The values of these four definite integrals are then:

f’:o‘; smS(v—m:) sm(v-—ma)d

g-nn vm:

sin(n—m)(S+1 -ﬁ)

mpm o = e e Rcolermp

o+ (S-1) (n-—m)]—f-

a-m - ’-—32‘—(3+1—p) cos npr

e py S2ESamm). tin (1)

N y—nx §—-mr

. sin (n—m)_(p-‘rl—S)-f— R
nEm =(-) ! T ‘ : Se

n—m oo
" xsinCln+m)p+(S+1) (n-m)d5 .
ne=m -(-—)-—”— +1-S8, sin npu'-' '

f sin 2py cos (g~ nn) :In (v—mx) d'

y—nr v—mx
: (l'rs)>p>l.¢n:#:m -0
nop =5 CO8 2npx

159> (5-1) Riz A-8)
' nkm - 8in (;"_:)p" cot[(n+m)p

; | K +”_"|jg R ——
) . continued

..

n=m =zpcos2npr
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continued,

- g-nu  g—mx L e
. A+9>p>1 ndkm, mmm,  1=0 -
“1>p>(S-1) 2z (1-S) B -

f .-cos' 2py sin (y—mx) _sin (,L,,;,,)' Jr%

. { nEm - .'m(!'.;.ﬂ_'.);{{l.'.'_p)!_.co' (n+ m))'
i} ‘n=gm wmr(l-p) cos 2np:'rv . sl

Translated for National Aeronautics and Space Administration under contract
No. NASw 2035, by SCITRAN, P. O. Box 5456, Santa Barbara, California, 93108.
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